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2  and G. C. Sih

3

Abstract

The theory of potential functions is applied to solve a

number of three-dimensional problems involving sheet-like

inclusions embedded in elastic solids. Two types of inclu-

sions are considered; namely, that of a rigid elliptical disk

and a rigid sheet containing an elliptical hole. By varying

the ellipticity of the disk and hole, certain information on

the general character of the stresses around a plane inclu-

sion of arbitrary shape may be obtained. More precisely, if

reference is made to a suitable coordinate system, the func-

tional forms of the stresses in the close neighborhood of the

inclusion border can be expressed independently of uncertain-

ties of both the inclusion geometry and of the applied

stresses or displacements. In general, the intensification

of the local stresses can be described by three parameters

which may be used to establish criteria for the failure of

the solid containing the inclusions.

1This research was supported by the U.S. Navy under Contract

Nonr-610(06) with the Office of Naval Research in Washington,
D.C.
2 Department of Civil Engineering, The City College, New York,
New York.

3 Professor of Mechanics, Lehigh University, Bethlehem, Penn-

sylvania.



Introduction

During the past few decades, considerable attention has

been devoted to the solution of two- and three-dimensional

problems of stress concentrations around inclusions of a

variety of shapes. Since the literature on this subject is

exhaustive, only those works which are pertinent to the

present study will be cited.

The problem of a thin rigid circular disk embedded in an

infinite solid and subjected to a constant displacement nor-

mal to its plane was solved by Collins [1]. His results are

equivalent to the slow steady motion of a rigid disk in a

viscous fluid. In a recent paper, Keer [2] has considered a

similar problem in which the disk is displaced in its own

plane. The case of an infinite solid containing a rigid

sheet with a circular hole was also discussed in [2]. The

disturbance of an ellipsoidal inclusion in an otherwise uni-

form stress field was examined by Eshelby [3,4]. In the

limit as one of the principal axes of the ellipsoid vanishes,

the solution to the problem of a flat elliptical disk may be

deduced from the work in [3,4].

For the purpose of assessing the strength degradation of

solids due to the presence of disk-shaped inclusions, it is

important to have a knowledge of the singular behavior of

the stresses near the sharp edges of the inclusions. To this
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end, the present investigation is concerned primarily with

the determination of stress solutions of the following bound-

ary-value problems:

(1) A plane inclusion of elliptical shape in an other-

wise uniform tensile field.

(2) Elliptical disk displaced in its own plane.

(3) Displacement given to a rigid sheet with an ellip-

tical hole.

(4) Elliptically-shaped disk displaced out of its own

plane.

Referring to a system of Cartesian coordinates x,y,z,

the z-axis will be directed normal to the plane of disconti-

nuity which is bounded by the ellipse

x 2 /a 2 + y 2 /b 2 = 1, z = 0 (1)

where a and b are the major and minor semi-axes of the

ellipse, respectively. The center of the ellipse is located

at the origin of the coordinate system. The rectangular

components of displacement ux , uy, uz and stress a yy,

-- T are assumed to be continuously differentiable at

all interior points of the solid and take definite values on

either side of the ellipse except that on the periphery of

the ellipse the stresses may become infinitely large. At
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large distances from the origin, all the stresses and dis-

placements tend to zero. The problem is to find a suitable

solution of the Navier's equation of linear elasticity for

a homogeneous, isotropic body.

In the absence of body forces, the displacement vector

u is governed by the equation

V2u + I vV.u = 0 (2)

where v is Poisson's ratio. The gradient and Laplacian

operators in three-dimensions are denoted by v and V2, re-

spectively. For problems exhibiting symmetry about the xy-

plane, which contains the surface of discontinuity, the dis-

placement vector u may be expressed in terms of a vector

potential c with components x' y' 9z and a scalar potential

[5]:

u = + zvip (3)

Hence, it is not difficult to verify that eq. (2) can be

satisfied by taking

4 = .(4)
3z 3-4 v V.4

and

V2 = 0, V 2 p 0
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The displacement vectors for problems possessing symmetry

with respect to the yz- and zx- planes may be obtained from

eqs. (3) and (4) by cyclic permutation of the variables

x,y,z. For instance, the representation

u = ' + xv ' W__ =' _ 1 "~' (5

' x 3-4v 4 (5)

applies to problems with symmetry about the yz-plane. In

eq. (5), ' and p' satisfy the Laplace equation in three-

dimensions.

It should be mentioned that eq. (3) or eq. (5) is a

special representation of the more general solution of

Papkovitch [6]:

u = 4(1-v) B - v (R . B + B ) (6)

where R is the position vector. Denoting the components of

B by Bx , By, Bz , the Papkovitch functions are related to €

and P in eq. (3) as

Bo Bo 0BB 0 - y -aB = - B 0 + (3-4v)B

= Bz

and the two components Bx, By are taken to be zero.

Once the displacements are known, the stress tensor a

follows directly from the stress-displacement relation

S l-2v (v.u) I + vu + uV] (7)
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in which u is the shear modulus of the material and I is the

isotropic tensor.

Triaxial Tension Of Elliptical Disk

Consider an infinite solid with an elliptical disk lying

in the xy-plane. The z-axis pierces through the center of

the disk whose surfaces are subjected to the displacements

Eux = _ [ai-v(a2 +o3)]x,

Eu y a [ 2-v(G3+al)]y, Euz = 0 (8)

for

z = 0 and x2 /a
2 + y 2/b 2  1

The Young's modulus is denoted by E. Now, the negative of

the displacements in eq. (8) correspond precisely to those

of a uniform state of stress in a solid with the disk absent,

i.e.,

axx = Ul r yy = :2 zz = 03' xy = T yz = = 0 (9)

Superposition of the solutions of the two preceeding problems

will leave both faces of the disk free from displacement and

will yield the result to the problem of a thin rigid ellip-

tical disk in an otherwise uniform state of stress. Hence,

it suffices to solve the non-trivial second fundamental prob-

lem owing to the boundary conditions given by eq. (8).
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Let f(x,y,z) be a harmonic function such that

x (3-4,) f , = (3-4v) 0 (10)
x Dy (34 ) fz

From eq. (3), the displacements become

_ 2F _ F u2fx 3x ' U y ay ' z Z;= z (

in which F is defined as

F = (3-4v) f + z 'f

Upon substitution of eq. (11) into (7) gives the stress com-

ponents

CTxx a2f 92F a 2f a2F
2v - + Tx- v - = + - ,

CYzz - 2(2-v) 32f +@2F yTx D2F

a 2 f a2F F

- 2(1-v) yz + @yyz

T 2 f 2F

2(l-v) XZ + axaz (12)

To determine the only unknown function f(x,y,z), ellip-

soidal coordinates C, n, c will be employed. The rectangular

coordinates x,y,z of any point will be expressed in terms of

the triply orthogonal system E, n, in the form [7]
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a2(a2-b2)X 2  = (a2+E)(a
2 +n)(a

2 + )

b 2(b 2-a2)y2 = (b2+E)(b 2+n)(b2+ )

a 2 b 2 z 2  = Eqn (13)

where

0 > E > 0 > n > -b 2  > c > -a 2

In the plane z = 0, the inside of the ellipse x 2 /a 2  + y2lb2

= 1 is given by E = 0, and the outside by n = 0.

Making use of eqs. (11) and (13), the boundary conditions,

eq. (8), become

af 1
(3-4v) _ 1 -v( 2 +a 3 )]xl E = 0

(14)

(3-4v) f - v(3+Gl)y = 0

which implies that

2 f + 2 f _ 2 f

+- = constant, : 0

The solution of this problem can be obtained from the known

result for the gravitational potential at an external point

of a uniform elliptical plate [8], i.e.,

f(x,y,z) 2 ' [aX2 + + - I] (15)

-8-



where

Q(s) = s(a 2+s)(b 2 +s)

For subsequent use, the following partial derivatives are

computed:

af 2A1
x -a3kr [u - E(u)]x

af 2A snu cnu

y a-kzk,r [E(u) - k'2u - k2 dn U ] y (16)

The variable u is related to the ellipsoidal coordinate

by

= a2 (sn- 2  u-l)

and

U

E(u) = f dn2t dt
0

The quantities snu, cnu, --- , represent the Jacobian elliptic

functions and k, k' stand for

ak = (a2-b2)1/ 2, ak' = b

A glance at eqs. (14) and (16) shows that the constants A1  in

eq. (15) cannot be evaluated uniquely. For this reason, the

additional solution

ux =A 2x, uy = A,2y u z = 0 (.17)
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will be introduced. The sum of eqs. (14) and (17) renders a

system of two algebraic equations for the two unknown con-

stants A and A2 which yields

ab2  (l-v)(0 1+02 ) - 2vG3

A1 = - EkT " a (l+v)(3-4v)

(18)
a 1 -2 3-4v a2

A2 = T, - aT7 [(1 + b-z)E(k) - 2K(k)] A1

where K(k) and E(k) are the complete elliptical integrals of

the first and second kind associated with the modulus k,

respectively.

When the stress state

0xx - 21 A2 , ayy 2 A2 0zz Txy 0

is added onto eqs. (12), the contact stresses for C = 0 may

be calculated4  The normal stresses

0XX -0 3 (l-v)(Gl+o 2 ) - 2va 3

(C ) = P - Z [ (I+v)(3-4v) ]
L(yy):

(l-v)(Ol+02) - 2v03 (19)
(ozz) = (l-2v) [ (1+)(3 4v)

4 The higher order derivatives of the function f(x,y,z) can be

found in a paper by Kassir and Sih [9].
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are found to be independent of the geometry of the elliptical

disk. For n = 0, i.e., outside of the ellipse x2 /a2  + y2/b2

= 1, a Xx$ a, and azz become singular on the edge of the

disk. Further, the stress exerted by the surrounding material

on the disk in the z-direction vanishes if the material is in-

compressible. The shear stresses on the disk are given by

(Txy) : 0

1 -V) (a +a2) 
2va3~/2 (1x/ 2.y/

()C= = 2(1-v)b 1 (l _(- 2 E(k )3]E /a2(_a_2b) 2

(i_v)(ai+o2) - 2va, I
(Txz) = 2(l-v)b [ (l+v)(3-4v)E(k) ]2a2]'(l-x2/a2-y2/b2) 2(yz C = 2 l0) (1+v)(3-4v)E(k)

(20)

While both Txz' Tyz are zero for n = 0, they are unbounded on

the boundary of the disk for E = 0 as shown in eq. (20).

In the limiting case of a b, E = K = T/2 , the constants

A1 and A2 in eq. (18) take the forms

a 3  (l-v)('ll+0 2 ) - 2va3 A G2_-(Gl+G3)

A1  - T7 (l+v)(3-4v) A2  2p(l+v)

and eqs. (19) reduce to the results for a penny-shaped disk

given by Collins [1]. The shear stresses in eq. (20) may be

combined to yield
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(l-v)(0l +2) - 2va3 r/a

(1-v)(3-4v)7T Vl-(rla)

0 < r < a, z = 0

where a = 0 for r > a, z = 0. The plus and minus signs refer

to the upper and lower faces of the disk, respectively.

Returning to the problem of finding the stress distribution

in an infinite solid containing a thin rigid disk under tri-

axial tension at infinity, it is necessary to express the con-

stants A1  and A2, explicitly, in terms of the applied stresses

at infinity

0xx = 31O, ayy = a2 , azz a3

which are related to a1 , 02, 03 in eq. (18) as

O = G1 - 21JA 2 , 02 = G2 + 21A 2 , 03 = 03 (21)

Inserting eq. (21) into eq. (18), it can be easily shown that

O , a2 , 03 cannot be prescribed independently. This re-

striction can be illustrated by considering two special cases

as follows:

Case (i) 01 = 02 = 0

Let the stresses at infinity be

axx = al - 2A 2 , ayy = a2 = 2'A 2' azz 03
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Solving for A1 and A2 gives

ab2v
2A (l+v)(3-4v)E(k) 03

(22)

2= _ 0 = 02 = _ (l+v)k0 [2-k 2 -2k' 2  K(k 3 03

Case (ii) 02 = 0

Another possible solution can be obtained by specify-

i ng

axx = G1 = GI  - 21JA 2 , yy 02 = 21JA 2  azz 03

It follows that
-]o

a3k2[v 3o - (l-v)ol

2 Al 2(3-4v)[(l-v)K(k) - (l-va 2/b2 )E(k)]

(23)

Co=v (l+v)

2pA 2  0 7 (lw+o3 0) - 2

[(a2 /b 2 )E(k) - K(k)][vo 3 o -(l-v)o I  ]

----(l-v)K(k) - (l-vaz/bz)E(k)

Eqs. (22) and (23) indicate that the specification of the

5
applied stresses is severely restricted In the present method

5Such a restriction was also mentioned briefly by Eshelby [4]

in his survey article on the problem of the ellipsoidal inclu-

si on. -13-



of analysis of inclusion problems, it appears that only two

of the three principal stresses at infinity can be specified

independently.

Elliptical Disk Displaced Along Its Major Axis

Let an elliptical disk be embedded in an infinite solid

and be placed in the xy-plane. The disk is displaced along

its major axis by the amount u0 , a constant. The necessary

boundary conditions are

ux = uo Uy = uz 0 0

(24)

z =xz yz =0 n=O

The symmetry conditions suggest the following selection of

potential functions:

x= - (3-4v)g + ah, y y ah ' = g (25)x' ay~ y''z az'

where x' 0y, 0z are the rectangular components of the vector
x y z

0' in eq. (5). The functions g(x,y,z) and h(x,y,z) satisfy

the Laplace equations

v2 g(x,y,z) = 0 , v2 h(x,y,z) = 0

Putting eq. (25) into (5), it is found that

ux = -4(l-v)g + aG _uy = G aG (26)
= 3y y 'z
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From eq. (7), the components of stress are obtained:

ag @ 2 G a g a 2 G

-2(2-v)-- + , Y -2v-- + -- ,

z ag @2 G
7 -11 -2v'ax + -T '

ag a 2 G T z 2G
-2(l-j)Ty +=

T ag @2 G

= -2(l-)-5z + axaz (27)

The appropriate harmonic functions for this problem may

be chosen as

g y ds 2B1

g(x,y,z) : B1  -- a u
(28)

ds 2B2
h(x,y,z) = B2 x f - [u - E(u)]x

2 (a2+s)/Q () a3k2

Note that h(x,y,z), except for the multiplying constant,

represents the derivative of the gravitational potential at

an external point of an elliptical disk with respect to x.

For the purpose of evaluating the constants B1 and B2 , the

displacement component uz is computed:

-15-



1
2

2x[nc(a 2+E)(b 2 + )] [B B2
Uz =- ab(E-n)(E-d) B1 + a+

The condition that uz vanishes everywhere on the plane z = 0

yields

B2 = a2 B1  
(29)

By virtue of eqs. (24), (26) and (29) for E = 0, B1 is found:

B1  uo a (~ k2 k -- ETk7 (30)

Knowing B 1 and B2 , the displacements and stresses at any

point of the solid can be calculated. On the plane z =0,

the non-vanishing displacements are

(ux)n= - 1T {[1+(3-4v)k2 ]U- E(u)

+ a(x) (b2) }(31)
(u = - 2B 1 xy _______

and the stresses are

(T ) = 81 - ) 1 (l-x2/a2-y 2/b
2)- 2

xz =Oab
(32)

41j(1-2v)Blx _b2+E

z z n= a7+



Both T and y are singular on the border of the ellipse

x2 /a 2 +y 2/b2 = 1, while Tyz = 0 everywhere on the plane z = 0.

When a = b, K = E = 7T/2, eq. (30) simplifies to the form

2au
B1-- 0

1 iT(7-8v)

It can be verified that for r > a, z = 0, E - r 2  - a2 , and

u - sin - 1 (2-), eqs. (31) and (32) are in agreement with eqs.
r6

(23) and (24) in [2], respectively, except for 6

81,(I-2v) u cos e
(a ZZ) 0 () , r > a (33)

z=O m(7-8v) a (r/a)V(r/a)2 - 1

where u0 corresponds to A in [2].

6 Eq. (33) may also be derived directly from eq. (20) in [2]

if the order of integration and differentiation is properly

observed as follows:
1 a +a f(t) dt 8vu o

(oz) = -(1-20)- [lim f ], f(t) -

z=O 2 ax z0 -a Vr2+(z+it)7 7(7-By)

Carrying out the integration gives

8u (1-2v)u 1 a

z=O (7-8v) x r

8vp(l-2v)u o  aI/
- 0(-2v) (a)(r 2 -a2)- 1/2 cos

-7(7 - 8 r

Hence, the factor (l-v) in eq. (24) of [2] should be replaced
by cos e.
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The foregoing method of solution may also be used to

solve the problem of an elliptical disk displaced in an

arbitrary direction by a constant amount, say 6o . If w de-

notes the angle between the x-axis and the direction along

which the disk is caused to move, then the boundary condi-

tions, eq. (24), may be generalized:

ux = 60 cos , Uy = 60 sin w, uz = 0, E = 0

u = Txz= Tyz = 0, n = 0

The displacements are expressible in terms of four harmonic

functions as

9G G G

= -4( 1  u = - -v)gv)g2 + uUx -Y4(l-_v)gl + Tx' y y Uz = z

in which

Go = G + G2, G1 = xg 1 + hl, and G2 = Yg 2 + h2

To satisfy the Laplace equations in three dimensions, gj(x,y,z)

and h.(x,y,z) are taken in the forms

gj(x,y,z) = C ds, j = 1, 2

hl (x,y,z) = Dyx  f ds

h 2(x,y,z )  = D 2Y f db2 s)

2 2 + S)-1-S7

-18-



Since the displacement uz vanishes for z = 0, the constants

D. may be expressed in terms of C.:

D = -a2C , D2  -bD1 C1  =0 2C

The remaining unknowns, say C. (j = 1, 2), can be evaluated

from the boundary conditions yet to be satisfied and the solu-

tion of the problem is essentially complete.

Displacement Of Rigid Sheet With Elliptical Hole

Suppose that two semi-infinite solids are bonded perfectly

to a thin rigid sheet with an elliptical opening through which

the solids are connected. The sheet is allowed to move in the

plane z = 0 by a constant amount parallel to the x-axis. The

equivalent condition is to specify a constant shear stress

Tzx = 'o for E = 0. For this problem, the following conditions

must be satisfied:

u Uy = 0, n = 0; uz  0, z = 0

(34)

Tyz 0, TZ X T 0

The problem may be formulated in terms of a single function

p(x,y,z) which is related to and i in eqs. (3) and (4) as

x =  -(3-4 )2' y = z O, a P

x3 ' y z

where

-19-



v2p(x,y,z) = 0

The representation of the components of displacement as given

by Trefftz [5] is

2 u2 p
u x  = -(3-4,) + z u z u = z xDzP(35)

xz D y DxDy' z xDZ

The stresses corresponding to eq. (35) are given by

Gxx 9p 92p Cyy _ 9p D2p

- = - [-(3 -2 v)yz + z -x ] ,2 = - [-2v z + z --=

zz _ 
__p _2 D p D2p

2x - x [(1-2v )T-z + z z -], x y [-(3-4v)T + 2z

TY 29 2 p D2 Dp

72[p+2z --z zx = -(3-4v)-z--7 + = [p+2z yi]

(36)

On the plane z = 0, eq. (34) requires that

1P = 0, n = 03z

(37)

D2p 32 p T0-(3-4v) 7z = -- , E = 0

The first condition in eqs. (37) is satisfied automatically by

taking

P( , , ) C X 2  2  z 2  ds

p(x,y,z) - 7 +a[ s +b + - ]

-20-



while the second condition yields

a 3 k2 k- 2
T 0

2iiC = kI2K(k)+[(3-4v)k 2 -kh2]E(k)

Once p(x,y,z) is determined, the displacements and stresses

throughout the solid can be computed from eqs. (35) and (36).

For z = 0, both u and u vanish and

(u ) 2C (3-4v) (l-x2/a2-y2/b2)l/
2, (u ) = 0

0 ab

The stresses on the plane z = 0 are

(z) - - 4p(l-2v)C x (l-x2 /a 2 -y 2/b 2 )- 1/2

zz EOa b

(38)

(T yz) 2 -2pC xy
n:O ( E -QT7ET

(T ) 2C f 3-4v [ ab2  - E(u) + snu cnu]
n=O[ ab 2  /-T& dn u

+ u-E(u) x 2  b2+
a k ( _ ) (a2 + ) (a2 + )9

and

(zz (T ) o, ( T on=0 YZ E=0 zx =O0

Using L' Hospital's rule, the constant C for a circular

hole, a = b, may be recovered:

2a3T
C- 0

-(7-82)
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Aside from a couple of misprints, (u x) , ( ) , and

yz=O n=O

(Tzx) check with those given by eqs. (41) and (42) in [2]

if T is identified with cyo. The expression for

(ZZ) = - 8(-2v) r/a T Cos e
z=O n (7-8v) / 5-(r 7/a) 0

fails to agree with that of [2] for the same reason as men-

tioned earlier in footnote (6).

Axial Displacement Of Elliptical Disk

If a thin rigid disk of elliptical shape is given a con-

stant displacement w0 normal to its plane, then

ux =u = O, z O; uz =w 0 ,= 0 (39)

which suggests that

Cx = 0, z = -(3-4v)q, = q (40)

Inserting eq. (40) into (3), the result is

u = z - u z a uz  -(3-4v)q + z (41)

From eq. (7), it is further found that

S q 3q aq 2q
2xx -2 - + z 5= -2v- + Z -

aq a2 q Txy D2q

2zz -2(I-v) -z + z az-- 2p z 3x9y
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T - Dq a2 q Tzx 3q D2q (42)
-l-2v) +y ayaz' 2p (I-2v) - + z axz(

The only unknown function q(x,y,z) satisfying

v2 q(x,y,z) = 0

can be taken in the form

q(x,y,z) = D f u (43)
VC VQTs7 a

Eqs. (39), (41) and (43) may be combined to give

aw o
D 0 -

-- 2(3-4v) Kk7

Calculating for the derivatives of q(x,y,z) with respect to

x,y,z, i.e.,

aw 0x _(b2+C

x (3-4v)(C-n)(E-C)K(k) " = +C

aw0y __7__Baw aOY (a2+ )

Ty- 3-4v)(&-n)(E-c)KR7j" "b+

Bew 0 (n )I / 2

az- D (- 4v)b (n ( cK (k) V" JZ+ E)Fb7+)

and so on --- , the non-trivial displacements and stresses for

z = 0 are

w o

(uz) WoI (uz) - K--0 [u]. 0=0 2-O

-23-



and

=+ 4v,(l-v)w 0 - 2 /a2 -y2 /b2) 1/2, F

x ~ ~ ~ 34) K(k)+2 1 ,jw0

(Z + T 1/2v K(k) /(a 2 +C)(b 2 +) j

(44)

in which -(b2 +C) is a positive definite quantity. The nota-

tions z=O+ and z=O - refer to the upper and lower faces of the

disk, respectively.

The force exerted by the elastic solid to oppose the

displacement of the elliptical disk may be found from the

integral

Fz = f Xf [(aYZ z=rj + - (a zz) Z=-Idxdy (45)

The region X is bounded by the ellipse X.2 /a2 +y 2 /b2 = 1. Sub-

stituting eq. (44) into (45), F z is obtained:

F8Pi(1 -v) w0  ff l-2ay2b) 1/2 dd
z - (3-4v)b K(kTWTx/a- 2 b)dd

1 67ni(1 -V)aw0  ( 6
-- (3-4v)K(k) (6

In the limit as a -~ b, eq. (46) reduces to Collin's solution

[1] for a circular disk.
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Three-Dimensional Stresses Near Inclusion Border

For the purpose of establishing possible failure criteria,

the stresses near the border of a plate-like inclusion will

be investigated. It is convenient to introduce a rectangular

cartesian coordinate system n,t,z such that the origin of this

system traverses the periphery of the inclusion. The zn-,

nt-, and tz- planes are known, respectively, as the normal,

rectifying and osculating planes to the curve which will be

taken in the form of an ellipse.

In the immediate vicinity of the inclusion border, the

ellipsoidal coordinates C, n, C can be expressed in terms of

the polar coordinates r, 8 defined in the nz-plane, where r

is the radial distance measured from the edge of the inclusion

and e is the angle between r and the n-axis. The required re-

lationships of E, n, C to r, e are
7

2abr

(a2 sin 2 i + b2COs2 )1/2 COS2

2abr sin 2  (47)

(a2 sin 2 4 + b2cos2l1/
2  2

- (a2 sin 2 + b2cos 2 f)

7A detailed derivation of eq. (47) is given in [9].
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In eq. (47), r is assumed to be small in comparison with a

(or b) and is the angle appearing in the parametric equations

of the ellipse, i.e.,

x = a cos p, y = b sin

Since the derivation of the local stresses is similar to those

given by Kassir and Sih [9] for the three-dimensional crack

problem, the detail calculations will be omitted here. By

means of eq. (47) and the appropriate equations for finding

the stresses, the following results are obtained:

kI  a e 3o

Snn + -cos - (3-2v - sin - sin -)
nn 2 2 2

k e e 3a
+ sin - (2v + cos - cos -) + 0(l)

VTF 2 2 2

o e 3e

" - l cos - (1-2v - sin - sin -)
/2 2 2 2

k 2 8 36

+ - sin - (2-2v - cos - cos -) + 0(l)
2 2 2

kI 1 k 2  a

CY tt = +  .2 cos - + - 2v sin - + 0(1)

k3  e

Tnt _ - cos - + 0(1)
-262
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T + I a8 38e
n +'__ sin - (2-2v + cos - cos -)
nz r 2 2 2

k 2 e 38
+ - cos - (l-2v + sin - sin -) + 0(1)

V2 2 2 2

k 3  0

= tz sin - + 0(l) (48)
tZ2_ 2

Although these stresses were derived from the solution of an

elliptically-shaped inclusion, they are in general valid for

a plane inclusion of arbitrary shape. Moreover, the inclusion-

border stress fields for the four preceding boundary-value

problems are included in eq. (48) as special cases.

Now, it is significant to observe that eq. (48) is com-

posed of the linear sum of three distinct stress fields each

of which can be associated with a different mode of deformation.

Referring to Figs. l(a) through 1(c), the intensity of the local

stresses at the point P caused by the movements of the inclusion

in the n-, z-, and t- directions are governed, respectively, by

the three parameters kl , k2 and k3. These three modes of dis-

placements are necessary and sufficient to describe all the

possible displacements of the inclusion. It will be shown sub-

sequently that the parameters k. (j = 1, 2, 3) depend only upon

the prescribed stresses or displacements and the inclusion ge-

ometry. The singular behavior of the inclusion-border stresses
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is the same as that for a sharp crack. In other words, the

I/-r type of stress singularity is preserved. However, un-

like the crack problem, the angular distribution of the

stresses is a function of the Poisson's ratio of the elastic

solid.

A close examination of the stress expressions in eq. (48)

reveals that Gnn' a zz and T nz correspond precisely to those

obtained by Sih [10] 8  for a rigid line inclusion under the

conditions of plane strain. In fact, the stress component

att is equal to i(a nn+o zz + ) a condition which is well known

in the analysis of plane strain problems. The shear stresses

T nt and T tz can be identified with the two-dimensional problem

of a line inclusion subjected to longitudinal or out-of-plane

shear loads. Hence, the stress state around a plane inclusion

in three-dimensions is locally one of plane strain combined

with longitudinal shear.

8 The stresses arr' ar , and T re given by eq. (48) in [10]

should be transformed into rectangular components axx' yy,
T in accordance withxy

a xx + a y= a r J0x yy rr 88

a - a + 2 iT = e -2i (C - + 2 iT )Oyy Oxx xy 88- rr r

For K = 3-4 \, the functional forms of a , G T correspond
to a nn, a Z Tnz in this paper, respectOelyYy  xy
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In general, the three parameters k. (j = 1, 2, 3) will

occur simultaneously over the inclusion border. They may be

interpretated as a measure of the elevation of stresses due

to the presence of thin rigid inclusions embedded in elastic

solids. From eq. (48), the formulas

1

kI  l im V"r (a zrO zV er=

_ 1 lim Y2r (Tnz)

l-2 r-*O e=0 (49)

k3 = lim 2 (Ttz)

r-O e=0

are obtained. Eq. (49) may be applied to evaluate k. for the

boundary-value problems solved earlier. Following the work

of Kassir and Sih [9], it is found that

(1) Triaxial Tension.

(i_V)(Gl+ 2 )2va 3  b1 / 2  1

(-) (a2Sin 2 0 b2COS20)l
4

1 (l+v)(3-4v)E(k) a

k2 = k3 = 0 (50)

(2) Parallel Displacement.

2iak 2u0  b 1/2

1 [(3-4v)k 2 +l]K(k)_E(k) (a) (a2 sin 2 p

+ b2cos2p) - 3/4 cos , k2 = 0
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4H(l-v)ak
2u a 1/2

3  [(3-4v)k 2 +1]K(k)-E(k) (b) (a2 sin2

+ b2 cos 2 f)- 3/4 sin (51)

(3) Rigid Sheet.

2bk 2 [ b 1/2
1 [(3-4v)kz-k']E(k)+k'zK(k) (a) (a2sin 2

+ b2cos 2 f)- 1/4 cos , k2 = 0

(3-4v)ak 2T0  b 1/2

3  L(3-4v)kz-k'z]E(k)+k'zK(k) (a) (a2sin 2p

+ b2cos2 )- 1/4 sin (52)

(4) Axial Displacement

a 1/2
k= , k2 = - (3-4v)K(k) (b) (a2sin 2

+ b2 cos 24)- 1/4, k3 = 0 (53)

It is interesting to note that k. are not constants but func-

tions of position. Eq. (50) is associated with the local dis-

placement shown in Fig. l(a) while eq. (53) with Fig. l(b).

The displacement modes pertaining to the results in eqs. (51)

and (52) are more complicated. For 0 < < 7, the inclusion
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border experiences a combination of the movements illustrated

in Figs. l(a) and 1(c). The parameters kI  and k3  attain their

maximum values at @ = 0 and = L, respectively.

For problems involving all three parameters k. (j = 1, 2,

3), it is possible to postulate a criterion of failure for

rigid inlcusions in the form

fcr = f(k I , k2, k3 )

which states that failure of the material surrounding the in-

clusion occurs when the combination of kI , k2, and k3 attains

some critical value.
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